skip to main content


Search for: All records

Creators/Authors contains: "Stabb, Eric V."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Many pheromone sensing bacteria produce and detect more than one chemically distinct signal, or autoinducer. The pathways that detect these signals are typically noisy and interlocked through crosstalk and feedback. As a result, the sensing response of individual cells is described by statistical distributions that change under different combinations of signal inputs. Here we examine how signal crosstalk reshapes this response. We measure how combinations of two homoserine lactone (HSL) input signals alter the statistical distributions of individual cell responses in the AinS/R- and LuxI/R-controlled branches of theVibrio fischeribioluminescence pathway. We find that, while the distributions of pathway activation in individual cells vary in complex fashion with environmental conditions, these changes have a low-dimensional representation. For both the AinS/R and LuxI/R branches, the distribution of individual cell responses to mixtures of the two HSLs is effectively one-dimensional, so that a single tuning parameter can capture the full range of variability in the distributions. Combinations of crosstalking HSL signals extend the range of responses for each branch of the circuit, so that signals in combination allow population-wide distributions that are not available under a single HSL input. Dimension reduction also simplifies the problem of identifying the HSL conditions to which the pathways and their outputs are most sensitive. A comparison of the maximum sensitivity HSL conditions to actual HSL levels measured during culture growth indicates that the AinS/R and LuxI/R branches lack sensitivity to population density except during the very earliest and latest stages of growth respectively.

     
    more » « less
  2. ABSTRACT To maintain the turgor pressure of the cell under high osmolarity, bacteria accumulate small organic compounds called compatible solutes, either through uptake or biosynthesis. Vibrio parahaemolyticus , a marine halophile and an important human and shellfish pathogen, has to adapt to abiotic stresses such as changing salinity. Vibrio parahaemolyticus contains multiple compatible solute biosynthesis and transporter systems, including the ectABC-asp_ect operon required for de novo ectoine biosynthesis. Ectoine biosynthesis genes are present in many halotolerant bacteria; however, little is known about the mechanism of regulation. We investigated the role of the quorum sensing master regulators OpaR and AphA in ect gene regulation. In an opaR deletion mutant, transcriptional reporter assays demonstrated that ect expression was induced. In an electrophoretic mobility shift assay, we showed that purified OpaR bound to the ect regulatory region indicating direct regulation by OpaR. In an aphA deletion mutant, expression of the ect genes was repressed, and purified AphA bound upstream of the ect genes. These data indicate that AphA is a direct positive regulator. CosR, a Mar-type regulator known to repress ect expression in V. cholerae , was found to repress ect expression in V. parahaemolyticus . In addition, we identified a feed-forward loop in which OpaR is a direct activator of cosR , while AphA is an indirect activator of cosR . Regulation of the ectoine biosynthesis pathway via this feed-forward loop allows for precise control of ectoine biosynthesis genes throughout the growth cycle to maximize fitness. IMPORTANCE Accumulation of compatible solutes within the cell allows bacteria to maintain intracellular turgor pressure and prevent water efflux. De novo ectoine production is widespread among bacteria, and the ect operon encoding the biosynthetic enzymes is induced by increased salinity. Here, we demonstrate that the quorum sensing regulators AphA and OpaR integrate with the osmotic stress response pathway to control transcription of ectoine biosynthesis genes in V. parahaemolyticus . We uncovered a feed-forward loop wherein quorum sensing regulators also control transcription of cosR , which encodes a negative regulator of the ect operon. Moreover, our data suggest that this mechanism may be widespread in Vibrio species. 
    more » « less
  3. ABSTRACT Pheromone signaling (PS) underlies many important bacterial behaviors, yet its ecological functions remain unresolved. Because pheromone-mediated behaviors require high cell density, the term “quorum sensing” is widely used to describe and make sense of PS. However, while this term has unified and popularized the field, bacterial PS clearly has roles beyond census taking, and the complexities of PS circuits indicate broader functional capacities. Two common features of bacterial PS are its regulation in response to environmental conditions and positive-feedback loops. Combined, these could enable PS to coordinate quorum-dependent group behaviors in response to heterogeneous environmental cues. Particularly in PS systems where positive feedback is strong, cells that are relatively far from a stimulatory environment could be recruited to a group response. Testing this model will benefit from in situ examination of relevant environmental cues and PS outputs in cells across populations, with and without positive feedback, in heterogeneous environments. 
    more » « less
  4. Summary

    A key regulatory decision for many bacteria is the switch between biofilm formation and motile dispersal, and this dynamic is well illustrated in the light‐organ symbiosis between the bioluminescent bacteriumVibrio fischeriand the Hawaiian bobtail squid. Biofilm formation mediated by thesypgene cluster helpsV. fischeritransition from a dispersed planktonic lifestyle to a robust aggregate on the surface of the nascent symbiotic organ. However, the bacteria must then swim to pores and down into the deeper crypt tissues that they ultimately colonize. A number of positive and negative regulators controlsypexpression and biofilm formation, but until recently the environmental inputs controlling this clash between opposing regulatory mechanisms have been unclear. Thompsonet al. have now shown that Syp‐mediated biofilms can be repressed by a well‐known host‐derived molecule: nitric oxide. This regulation is accomplished by the NO sensor HnoX exerting control over the biofilm regulator HahK. The discoveries reported here by Thompsonet al. cast new light on a critical early stage of symbiotic initiation in theV. fischeri‐squid model symbiosis, and more broadly it adds to a growing understanding of the role(s) that NO and HnoX play in biofilm regulation by many bacteria.

     
    more » « less
  5. ABSTRACT Transcriptional reporters are common tools for analyzing either the transcription of a gene of interest or the activity of a specific transcriptional regulator. Unfortunately, the latter application has the shortcoming that native promoters did not evolve as optimal readouts for the activity of a particular regulator. We sought to synthesize an optimized transcriptional reporter for assessing PhoB activity, aiming for maximal “on” expression when PhoB is active, minimal background in the “off” state, and no control elements for other regulators. We designed specific sequences for promoter elements with appropriately spaced PhoB-binding sites, and at 19 additional intervening nucleotide positions for which we did not predict sequence-specific effects, the bases were randomized. Eighty-three such constructs were screened in Vibrio fischeri , enabling us to identify bases at particular randomized positions that significantly correlated with high-level “on” or low-level “off” expression. A second round of promoter design rationally constrained 13 additional positions, leading to a reporter with high-level PhoB-dependent expression, essentially no background, and no other known regulatory elements. As expressed reporters, we used both stable and destabilized variants of green fluorescent protein (GFP), the latter of which has a half-life of 81 min in V. fischeri . In culture, PhoB induced the reporter when phosphate was depleted to a concentration below 10 μM. During symbiotic colonization of its host squid, Euprymna scolopes , the reporter indicated heterogeneous phosphate availability in different light-organ microenvironments. Finally, testing this construct in other members of the Proteobacteria demonstrated its broader utility. The results illustrate how a limited ability to predict synthetic promoter-reporter performance can be overcome through iterative screening and reengineering. IMPORTANCE Transcriptional reporters can be powerful tools for assessing when a particular regulator is active; however, native promoters may not be ideal for this purpose. Optimal reporters should be specific to the regulator being examined and should maximize the difference between the “on” and “off” states; however, these properties are distinct from the selective pressures driving the evolution of natural promoters. Synthetic promoters offer a promising alternative, but our understanding often does not enable fully predictive promoter design, and the large number of alternative sequence possibilities can be intractable. In a synthetic promoter region with over 34 billion sequence variants, we identified bases correlated with favorable performance by screening only 83 candidates, allowing us to rationally constrain our design. We thereby generated an optimized reporter that is induced by PhoB and used it to explore the low-phosphate response of V. fischeri . This promoter design strategy will facilitate the engineering of other regulator-specific reporters. 
    more » « less